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1 Introduction

Returning to the robot example of the earlier chapters, note that the various EA solutions had one
key feature in common: they evolved strategies that did not change during the simulated lifetime
of the phenotypes. In short, the phenotypes did not learn.

In real-world situations, hard-wired solutions, whether evolved using EAs or hand-coded by humans,
are difficult to trust due to the unpredictable nature of real-world environments. A strategy designed
for sunny days may become disastrous in the rain, or one that assumes a flat surface is thrown into
total confusion by a slight incline.

In general, a good many situations call for Al systems that can adapt to their surroundings.
Evolution is one form of adaptation, but it typically runs at a slower time scale than that of
environmental change. Hence, the individuals produced by evolution must also have plasticity:
they must be capable of changing their behavior to tackle unexpected conditions.

Thus, it makes good sense to combine evolutionary algorithms and artificial neural networks into
evolving artificial neural networks (EANNs). One EANN, Cellular Encoding, was described in the
EA applications chapter; there are many more. Particularly in the field of Evolutionary Robotics,
researchers have long recognized the power of EANNS.

Originally, EANNs were designed to replace learning with evolution, not to integrate the two
mechanisms. Basically, many situations call for ANNs with memory, which requires recurrent
links. Unfortunately, recurrent topologies make classic supervised learning via backpropagation
very difficult. Disregarding recurrence, supervised learning is still inappropriate for most robotic
applications, since omniscent teachers cannot provide the correct answer/response for each situa-
tion, particularly when a typical robot samples the environment (via it sensors) and reacts several
times per second.

Robotic applications are similar to many game playing situations in which feedback comes only at



the end of the task; a teacher cannot evaluate and correct each individual move. Such tasks are
amenable to reinforcement learning, while basic pattern clustering aspects of the problem can call
for unsupervised learning. But supervised learning of correct moves is normally infeasible.

In general, the ANN architecture is very useful for mapping from sensory inputs to motor outputs,
and the addition of recurrence allows memories to also affect action choices; but learning the correct
weights on these links is non-trivial. One popular solution is an EANN in which the weights are
determined by evolution. These systems do not learn, per say, since the weights are fixed during
the phenotype’s lifetime. But at least the EA approach can find some, very useful, weight vectors
for ANNSs, and it works equally well for both strictly-feed-forward and recurrent networks.

2 Three Levels of Adaptivity

In reviewing a small sampling of the EANN work, we give special focus to the level(s) of adaptivity
included in a system. These are:

1. Phylogenetic or Evolutionary - Characterized by the use of an EA and thus having clearly
definable genotypic and phenotypic levels, genetic operators, fitness functions, etc.

2. Ontogenetic or Developmental - Involving a non-trivial genotype-to-phenotype translation.
In most cases, the genotype is a recipe that, through some recursive growth process, produces
the phenotype.

3. Epigenetic or Learning - During actual performance testing, the system is able to modify
itself in some manner that effects future behavior.

AT systems that include all three are known a POE (Phylogenetic, Ontogenetic and Epigenetic) or
TRIDAP (three-way adaptive) systems. However, only a small sampling of Al systems include all
3 of these mechanisms. Most researchers find that one or two adaptive levels are sufficient for their
problems.

In natural systems, the border between evolution and both development and learning is relatively
easy to delineate, but the latter two overlap considerably.

Although evolution is an expansive, continuous and continual process, it can be described as a
repeated sequence of discrete, overlapping activities: living and reproducing. Reproduction is
singled out (among all the other life processes) since only it directly affects evolution’s course.
Each new round of genotypes represents another attempt at solving the survival problem.

Embryogeny begins directly after reproduction, with no significant overlap between the two. Hence,
development immediately follows the latest shift in evolutionary direction (i.e., the latest change
to the genotype pool). It then embodies an essential piece of the life process, and one that begins
the search in this new direction that evolution has chosen.



Epigenesis, (a.k.a., plasticity or learning), involves environmentally-initiated adaptive changes to
the post-natal organism. However, the line between plasticity and development frequently blurs,
often in concert with the popular nature-versus-nurture debates. Although many life processes,
such as growth, seem predominately governed by genes and post-natal development, they are easily
derailed by an overly-restrictive (or overly-permissible) environment. Similarly, plastic changes
such as increased muscle mass due to athletic training, are constrained by an individual’s genetic
code.

Neuroscience only adds further confusion to the development-learning distinction. One useful dis-
tinction posits neuron formation, migration and death, along with axonal and dendritic growth, as
developmental processes, while the fine-tuning of synapses is the neurological essence of learning.
However, all of these processes occur to greater and lesser degrees during embryogeny, post-natal
development, and even adulthood.

Since nature so seamlessly interleaves development and plasticity, any clean temporal separation
between them appears largely artificial.

Fortunately, as the designers of biologically-inspired computer systems, we stand free to embrace
or ignore nature’s spatial and temporal contexts of development. Our boundaries may be fuzzy,
while her’s are strict, or vice versa.

In the case of EANNSs, we define development as all aspects of phenotypic formation (and modifi-
cation) that occur prior to the beginning of fitness testing. Then, any changes to the phenotype
that occur during fitness testing constitute learning.

With EANNs, development (if any occurs) typically produces the network topology (i.e., the neu-
rons and their connection pattern), while learning involves the changing of connection weights due
to feedback during performance testing.

3 Example EANNSs

Montana and Davis [9] were the first to use EAs to learn weight vectors for ANNs. Their task was
actually a classic supervised-learning task: classification of patterns, in their case, patterns in sonar
data. Their genotype was a simple list of real numbers, each representing one weight of the ANN.
These were mutated by the addition of small increments (in the range -1 to 1). Crossover points
were restricted to chromosomal locations that were boundaries between the input weight sets of
individual neurons (i.e., the weights on all incoming links to a neuron). These sets of input weights
are common building blocks in EANNS, so their crossover operator was biased to treat these as
atomic units.

Their system out-performed standard backpropagation on the supervised learning task, but it was
beaten by newer, optimized versions. They therefore concluded that the approach was useful for

supervised learning but probably best for unsupervised situations.

Normally, to test the performance of a neural network, the data set is split into two parts: a training



set, s1 and a test set, so. Members of s; are then sent through the network many (hundreds or
thousands of) times in order to gradually adjust the weights to minimize output error. When
training is complete, the members of s9 are run through the network just once, and the total error
is recorded. Low error indicates that the network has generalized from its experience with sq, i.e.,
that it has learned a general concept and not simply memorized the training cases.

With EANNSs that evolve weights, there is no need for separate data sets. The weights are essentially
guessed during the initialization of the first generation, filtered by selection and refined by genetic
operators over many generations. They are not learned in any one generation. Fitness is based on
the accuracy of the network in classifying each member of the data set, so after many generations,
this accuracy increases.

Another one of the early EANN systems, by Miller et. al. [8], used evolution to determine the
connection topology of the network. Essentially, the genotype was a binary array in which the
rows were laid side by side to form one long bit vector. The array, a, represents the complete
network topology in a very straightforward manner: for any neurons n; and n;, a;; = 1 if and only
if n; outputs to n;; otherwise a;; = 0. Their system used a GA to evolve the network topology,
but the weights were initialized randomly and then learned via backpropagation. Their genetic
operators included bit-flipping mutation and crossover, again, with crossover points restricted to
those between each node’s input-weight set. Their system solved many simple problems, such as
pattern copying and XOR, but there was no clear indication that it would scale up. Since the size
of their genome is quadratic in the number of neurons, N, it has serious scaling problems that the
introduction of development into EANNs is meant to alleviate.

Figure 1 shows both approaches to the EANN representation problem.

Although Miller et. al. were the first to combine evolution and learning for ANN phenotypes,
Holland’s [4] original GA includes an elegant learning mechanism known as the bucket brigade
algorithm (described in the 1975 edition of [4]. Holland’s GA encodes phenotypes that denote
problem-solving rules run by a simple rule-based system. The combination of Holland’s GA and
the RBS is known as a classifier system . It uses the bucket brigade to perform credit assignment
along a temporal sequence of rule invocations, wherein not only rules whose application directly
leadsto a solution, but also early rules that help set up a solution, are awarded points/credit.
These points affect the prioritization of rules during problem solving, and thus, the bucket brigade
embodies adaptive lifetime performance, i.e. learning.

Kitano [6] contributed the first combination of evolution and development for ANNs. His phenotype
is a neural network generated from a connection table, identical in form to those of Miller et. al.
However, whereas Miller et. al. use genotypes that directly correspond to these tables, Kitano uses
context-free grammar rules as the basis for growing these tables, as shown in Figure 2.

Kitano employs a bit-flipping mutation operator and totally unrestricted crossover. In addition,
Kitano uses a mutation rate that is specific for each newly-generated child genotype. The rate is
inversely proportional to the Hamming distance between the parents. Hence, the children of similar
parents are more likely to be mutated. This makes intuitive sense relative to the goal of exploration:
if the parents are very different, then crossover alone with probably create unique children, but if
the parents are similar, then supplementary mutation is needed find child genotypes that are not
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clones of either parent.

Once evolved and developed, Kitano’s networks receive random initial weights that are then tuned
via backpropagation. Hence, Kitano was the first to design a complete POE/TRIDAP system.
Also, at first glance, Kitano appears to have solved the scaling problem in that large phenotypes
can be generated from short rule sets. His results are better than those of direct-coded GAs, but
a) the test conditions are somewhat suspect, and b) no demonstration with large ANNSs is given.
Hence, Kitano’s work serves as a proof of principle, but no more.
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Figure 3: Yaeger’s [14] PolyWorld system.

Yaeger [14] uses the POE approach in an artificial life (ALife) environment known as PolyWorld,



in which a population of agents move about, eat, mate and fight. As shown in Figure 3, each agent
consists of a genotype that encodes many properties of both its body and neural-network brain.
Hence, a significant developmental process is required to convert the genotypic parameters into
complete ANNs.

ANN weights are randomly initialized and then modified by unsupervised Hebbian learning as the
agent acts in the environment. The behaviors that eventually emerge in PolyWorld include edge
running, flocking, and cannibalism.

Although PolyWorld uses elements of evolution, development and learning, the developmental
stage is relatively minor. In effect, the genotype encodes all critical aspects of the ANN and body
morphology. These specifications must still be converted into phenotypes, but this is essentially an
act of assembly, not a legitimate growth process.

In game-playing, robotic and artificial life contexts, supervised learning has no practical utility,
since correct actions cannot be provided for each sensory context by an omniscent teacher or
teaching module. Although unsupervised learning is easily achieved with Hebbian weight updates,
it only allows the system to learn patterns, not to associate those patterns with value judgements.
Hence, although a PolyWorld agent can be born with the ability to move toward food, it has a hard
time learning associations between the temporally distinct (but clearly related) events of seeing,
approaching, and eating food. Hence, it cannot learn that finding food is a key prerequisite to the
rewarding experience (in terms of energy gain) of eating.

These situations call for reinforced learning (RL), wherein positive or negative reinforcements at
time T translate into modifications of the behaviors used at times T, T-1, T-2, etc. Ackley and
Littman [1] recognized this and designed their Evolutionary Reinforcement Learning (ERL) system
to investigate the interactions between evolution and learning.

Agents in ERL have brains consisting of two neural networks, one for action choice (A-ANN) and
another for evaluating states (E-ANN), as shown in Figure 4. There is no development in their
system: the genome encodes the initial weights for each ANN. Those of the E-ANN do not change
during the agent’s lifetime, while those of the A-ANN are modified via a specialized variant of
backpropagation.

The networks interact as follows: The current state of their artificial life world (AL World) is
input to the A-ANN, which chooses an action that (potentially) causes a change in the AL World
state. This new state, as perceived by the agent’s sensors, is fed into the E-ANN, which outputs an
evaluation of that state. Whether positive or negative, the evaluation is used to modify the A-ANN
weights so that similar actions are chosen or avoided, respectively, in similar future situations.

The AL World is a 2-dimensional grid populated with agents, plants and obstacles. Agents move
about, feeding on plants or other agents; they reproduce after having accumulated significant energy,
and die by running low on it.

A major impetus of the ERL project was to investigate The Baldwin Effect [2], an interesting
relationship between evolution and learning (which is detailed below). ERL confirmed this effect
in simulation via the following two emerging results:



Genotype

Initial weights for both networks

-~
ad - S N 27T \
/ /7
/ v / \
/ Sensors(T) ] Sensors(T+1)
) |
I |
: Action : Evaluation
I Network I Network
| |
| > |
| \ |
| \\ |
! eeee {
| I\
| Action(T) (I N Evaluation
| ~ | N |
N N
| ~N | ~_/

1 ~
AL AL
World(T) World(T+1)

Figure 4: Ackley and Littman’s [1] Evolutionary Reinforcement Learning (ERL) system for explor-
ing the interactions between learning and evolution in an artificial life world (AL World).




1. Early in the simulations, genes coding for the weights of the E-ANNs converge to a few
fixed values across the whole agent population. This low genetic variance indicates a selective
pressure for learning in the A-ANNSs, which depends upon accurate evaluations from E-ANNs.
This mirrors stage I of The Baldwin Effect, where learning is important and thus, learning
rates are high.

2. Later in the simulation, these same E-ANN genes diverge via genetic drift. This high variance
indicates low selective pressure for good weights in the E-ANNSs, and hence, no strong need
for learning in the A-ANNSs, (since the A-ANNSs evolve to have innately good weights). This
embodies stage II of The Baldwin Effect, wherein natural-born talents (who require little
learning) arise.

4 Biological Theories of Evolution and Learning

One of the first proposals that learning could accelerate evolution was Jean-Baptiste Lamarck’s
(1744-1829) inheritance of acquired characteristics, wherein physical and mental changes incurred
during one’s lifetime could be passed on directly to offspring. Contemporary knowledge of the germ-
soma distinction permits a recasting of Lamarckism in modern Neo-Darwinian terms, as depicted
in Figure 5. Thus, the theory entails a reverse transcription of the modified phenotype back into
the genotype, a process that is fully realizable and often useful in evolutionary algorithms, but
biologically unrealistic except in a few rare cases.

In 1896, James Baldwin postulated an indirect mechanism for the eventual inheritance of acquired
characteristics [2]. This Baldwin Effect involves two stages. In phase I (Figure 6), assume a set of
genotypes spread uniformly about a sub-optimal region, D1, of the fitness landscape. If phenotypes
have plasticity, then each can essentially perform local search in the fitness landscape (as shown
by the circles with horizontal arrows), and a rough estimate of phenotypic fitness will be the time-
averaged landscape locations of the phenotype. Clearly, those phenotypes lying near the base of the
optimal peak will have better opportunities to learn their way to higher fitness. Hence, they will
have a selective advantage, and the population distribution will move from D1 to D2. Basically,
learning smoothes the fitness landscape and enhances selective pressure such that the population
moves toward the optimal phenotype, denoted by P* on the phenotype axis.

To move, and not merely redistribute, the genotype pool, evolution relies on genetic operators
(mutation, crossover, inversion, etc.). If the genotype and phenotype space are well correlated [7],
then genetics can initiate the emergence of innately optimal phenotypes, natural born P*s, and, in
general, lead to a flattening of distribution D2 into D3 (Figure 7). Additionally, if learning has a
cost, as it normally does [7], then the P* learners will pay it but the natural-born P*s will not,
thus giving the latter a selective advantage and moving the population distribution from D3 to D4,
where the learned phenotype, P*, becomes fully innate.

Thus, in the Baldwin Effect, learning accelerates evolution; and then, if the fitness landscape is
static, evolution obviates learning via genetic assimilation.

10
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the base of the peak can achieve fitness increases over the innate value. This selective advantage
moves the genotype/phenotype distribution from D1 to D2, hence closer to the optimal phenotype,
P*. As depicted by the dotted curve, learning effectively smoothes the fitness landscape.
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D2 to D3, producing individuals with hard-wired optimal phenotypes, P*. Due to the cost of learn-
ing, these natural-born P*s have a selective advantage over the learned P*s, and the distribution
moves from D3 to D4.
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5 The Competing Conventions Problem

As described in [13] and originally recognized by Radcliffe [11], the symmetry of neural network
solutions poses a permutation problem for evolutionary ANNs. Basically, the same functional unit
can appear in different locations of different neural networks, such that crossover of these networks
produces functional redundancy (and the concomitant loss of other functions). As a simple example,
consider two networks for performing exclusive or (XOR), as shown in Figure 8.

This is a permutation problem, since N behaviors can be distributed N! ways across N internal
nodes of an ANN. Crossover among any two ANNs that do not employ the exact same permutation
can potentially lead to functional redundancy and loss. As described by Whitley [13], prior to
1995, several solutions had been proposed for this problem, but none were convincing enough
to make evolving ANNs a more efficient approach than backpropagation for the general case of
supervised learning in standard feedforward ANNs. In addition, some researchers even concluded
that competing conventions was not a serious problem at all.

However, in 1997, Moriarty and Miikkulainen [10] devised the SANE system, which effectively
evolves individual neurons, thus circumventing the Competing Conventions problem.

In SANE, the ANN topology is predetermined, with a fixed number of input, hidden and output
nodes. Networks are strictly feedforward, but the three layers are not necessarily fully connected
to one another. Each EA genotype encodes functional parameters for one hidden-layer neuron. For
any hidden node, H, this specification consists of pairs (index, weight), where the index selects an
input or output node, and the weight codes the value for the arc between that node and H. The
top of Figure 9 illustrates this encoding.

Individuals specifications are then evaluated in terms of their ability to cooperate with other specifi-
cations to form complete ANNs. Essentially, each individual participates in many random groupings
with other individuals, with the fitness of each individual being the sum fitness of the best 5 groups
in which it participates. The bottom of Figure 9 summarizes this process.

Extensive testing of SANE in domains such as game-tree search and robot control verifies that it:

e finds good solutions faster than standard whole-network evolutionary approaches,

e maintains population diversity over the entire simulation (since individuals cooperate, not
compete, with other individuals),

e quickly adapts to changing environments.

SANE skirts around the Competing Conventions problem by never explicitly linking neurons to-
gether in the genome. Although several similarly-functioning neurons may exist in the population,
functional heterogeneity is maintained naturally, since a) collections of diverse cooperating neu-
rons are needed to solve problems, and b) all neurons cooperating in successful ANNs are rewarded
with higher fitness.

14
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The heart of the Competing Conventions problem is the inability to detect functional similarities
among subcomponents, thus leading to redundancies and omissions during crossover. A similar
problem arises when chromosomes are allowed to change size during evolution. This is a desirable
property in terms of complexification: genomes begin small/short and gradually grow as evolution
finds good regions of the smaller search spaces. This is exactly how nature has operated over the
last billion years or so. Genomes have gradually become more complicated via the combination of
duplication and differentiation.

For example, consider a gene G that is tied to some trait T. Assume that a copy of G, G*, appears
on the chromosome, where G* also links to T. The addition of G* presumably has no effect upon the
phenotype other than to give extra support for the development of T. Now, since G* is redundant,
it is free to mutate to other neutral genes (i.e., those that do not affect fitness). Hence, as long as G*
does not code for lethal or otherwise deleterious traits, it is free to explore gene space. Eventually,
it may mutate to a fitness-enhancing trait, T*, thus moving the genome to a more complex (and
fitter) point in the search space. Clearly, the duplication has provided the genome with a certain
exploratory freedom, since a) trait T is still covered by G, and b) G* initially codes for something
useful, thus giving it a good starting point for further investigation.

EANNS can benefit from duplication and differentiation as well, thus supporting complexification.
However, competing conventions can intervene, as shown in Figure 10. Here, an initial gene triple,
ABC, duplicates in two different ways, to produce ABCDE and ABCFGH. In the figure, shape
indicates the phenotypic trait for which the gene codes; shape changes during the differentiation
phase.

When crossing over the unequal-length genomes, alignment becomes a problem. The variant on
the left produces children with either redundant or omitted C genes. The child ABFGH has no C
and thus cannot produce the octagon trait, while ABCCDE has extra octagons but no trapezoid.

On the right, each child gets a single copy of ABC, but neither gets all three of the new traits:
circle, trapezoid and square. Instead, each gets a duplicate of one trait.

Thus, alignment difficulties cause two problems: redundant genes and omission of phenotypic
traits. Thus, although two individuals may acquire distinct and useful traits, their mating is not
guaranteed to produce children with all of the good traits. Hence, independently-evolved building
blocks will not necessarily unite to produce superior phenotypes.

To solve this problem, Stanley and Miikkulainen [5] use an abstraction of the biological process of
synapsis, wherein identical genes align during recombination. In their NEAT system, each gene
includes a historical marker that denotes its relative time point of origin. As shown in Figure
11, this allows genomes to align properly, with identical genes always appearing in corresponding
spots. Hence, crossover itself a) never causes gene duplication, and b) stands a better chance of
combining phenotypic building blocks. The latter fact stems from the simple observation that two
genes coding for different traits will never align, and thus never be prevented from appearing in the
same child. They may not always combine, but they will have the following probability of doing
so:

17
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where pcross 1S the probability of single-point crossover, N is the total number of genes in the
population and hence the length of the aligned, gap-filled genomes during crossover, and HM(X)
and HM(Y) are the historical markings of genes X and Y. Basically, the closer that X and Y are in
time of origin, the closer they will appear on the aligned genomes, and thus the lower the probability
that the crossover point will be chosen between them. And of course, they can only be combined
on a child chromosome if the crossover point does split their locations.
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Figure 11: Avoiding Competing Conventions with historical markings, as used in Stanley and
Miikkulainen’s NEAT system [5]. The relative time of origin of each gene appears as a hyphenated
addition to its identifier. Crossover aligns genomes according to historical markings, thus preventing
gene redundancy and broadening phenotypic coverage in child genomes. However, duplication of
phenotypic traits can still occur, as shown by D-4 and H-8 in the upper child genome.

The actual genotype representation in NEAT codes for the number and type of network nodes, along
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with their connections and final weights; no learning is involved. Networks are initialized to have 3
layers: input, hidden and output, although the hidden layer can effectively have many topologies,
some of which give it a multi-layered look. A typical genotype and corresponding phenotype appear
in Figure 12. Genomes are mutated by either adding a new node (and a connection into and out
of it) or adding a new connection between existing nodes. Crossover uses historical markings, with
each node and connection gene having its own history stamp, as depicted in Figure 11.
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Input Input Output Hidden Hidden

Connections 1=5 2=>4 5=>3 1=>3 4=>3 2=>5 4=>5
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Figure 12: A typical genotype and corresponding phenotype in NEAT. Each rectangle denotes a
gene. Historical markings on both node and connection genes are not included.

5.1 Speciation for Complexification

In evolutionary systems, innovative phenotypes with useful new traits often arise. However, unless
those traits integrate nicely with pre-existing traits to form a better organism, the new phenotype
may lose in competition with its contemporaries. Essentially, evolution rarely gives new designs an
opportunity to work out the bugs. The sieve of natural selection has no compassion.

Evolutionary algorithms are equally ruthless, but they can be supplemented with explicit nich-
ing mechanisms such that new designs have a fighting chance against established solutions. For
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example, fitness sharing [3] divides an individual’s raw fitness by the number of individuals that
resemble it, where resemblance can entail similar fitness values or similar genotypes. Clearly, the
latter condition seems more reasonable, since two like-fitness individuals need not be similar so-
lutions. Fitness sharing prevents a population from converging, since as more individuals become
similar, they must share fitness among a larger and larger group, thus reducing each agent’s worth.
And this allows new, unique, solutions to get a foothold in the population, since a) they have some
promising properties, and b) they need not share fitness with a large group.

Unfortunately, judging similarity among graph-like structures such as neural networks is an NP-
complete problem, so proper fitness sharing would appear intractable. However, the NEAT de-
velopers solved the problem by using historical markings, which enable a simple similarity check
among pairs of individuals: compare their marking lists. NEAT exploits this similarity metric
and fitness sharing to integrate, not filter, innovation. In this way, neural networks can gradually
complexify over the evolutionary generations.

Stanley and Miikkulainen [5] view gradual complexification as the only feasible route to complex-
ity. To begin with large genomes creates an intractable search space. By beginning small, useful
general solutions can be found; they then improve by elaboration as new genes arise to code for
special accessory traits. In the end of an evolutionary run, the final genome may be large, but the
entire space that it represents never needs to be searched. Only subspaces of proven utility are
investigated.

Gradual complexification in NEAT leads to impressive performance results. It defeats four other
popular approaches, including SANE [10] and Cellular Encoding [?], on pole-balancing problems.
In addition, NEAT is the adaptive mechanism in an intriguing new video game, NERO, in which
teams of warriors are trained via an interactive evolutionary algorithm in which a) the human user
adjusts fitness parameters according to the desired type of fighting unit, and b) evolution modifies
the neural-network controllers of the fighters.

In summary, NEAT supports gradual complexification of neural networks via duplication and dif-
ferentiation of genetic material. It does so by including a simple, yet powerful, piece of information
in each gene: a historical marking. This concept can supplement many EAs, whether they evolve
neural networks or other structures.

6 Evolving Complex Neural Networks

Our central philosophy is that ANNs are the optimal representational medium for truly adaptive,
human-like behavior, but their topological layouts and the properties of individual neurons and
synapses (of which there are often tens or hundreds of thousands) cannot be pre-determined by
human engineers in anything more than an ad-hoc manner. The search space for complete ANN
designs that can achieve sophisticated behavior is simply ominous.

How, then, can artificial systems design truly complex ANNs for producing intricate human-like

behaviors? First of all, the meaning of compler needs careful attention. If size is a sufficient
measure of complexity, then straightforward developmental routines easily allow a small grammar
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to generate a large ANN. In that case, development would be the obvious key to scaling up EANNSs.

Unfortunately, complexity involves much more than size. Many large structures, such as classic
office buildings, involve multiple copies of basic patterns for floors, rooms, windows, etc. A complete
building plan for a 100-story office tower may only include details for a few of the individual floors,
such as those near the bottom and top, those where elevator transfers are necessary, etc. while
the remaining floors are just instantiations of a standard blueprint. The same is true of many
large circuits, which contain numerous copies of basic off-the-shelf components, often arranged in
repeated, stereotypical topologies. In short, the size of the recipe for producing the building or
circuit is much smaller than that of a detailed non-generative description of the finished artifact.

Truly complex structures are those whose descriptions cannot be compressed into concise generative
routines. Any generator would be as long (or longer than) a non-generative description.

It is quite possible that the brain of a well-trained animal exhibits this form of incompressible
detail. Even a restricted subset of the brain, say those areas needed to recognize and pursue prey,
probably contain several million neurons. Finding the proper weights for a collection of a million
interconnected artificial neurons defies current technology. We now consider the prospects for each
of the 7 subsets of the 3 adaptive mechanisms to eventually handle problems of this size.

First, evolution alone has little chance of handling the problem. A network of a million nodes might
have nearly a billion connections. Genomes of that size are unheard of in the EA community and
will not be for the foreseeable future.

Similarly, development alone could hardly generate a billion-link network unless it contained huge
amounts of symmetry/redundancy. Such large-scale repetitive structure would probably not suf-
fice to handle the intricacies of realistic animal behavior. Without the fine-tuning capabilities of
experience-based synaptic modification, development can only scale up to very regular structures.

In isolation, ANN learning techniques begin with a random set of weights and must tune them
to handle the current task. Techniques such as backpropagation must often process training sets
thousands of times, even when training very small networks. Whereas animals can learn from a
single experience, ANNs using backpropagation are embarassingly slow learners. The inability of
gradient-descent methods to efficiently handle recurrent networks is also a big problem, since all
complex circuitry in animal brains is highly recurrent. Of course, ANNs could be trained by more
Hebbian means, but these techniques have shown only moderate success to date.

ANNS that only learn must normally do so with a fixed, pre-defined topology. Standard 3-layered
(input, hidden, output) topologies work well on a wide variety of mapping problems, with the main
question being the number of hidden nodes. Fully connecting each layer to its successor layer also
works well in the general case, with irrelevant links simply attaining weights close to zero. However,
these extra links increase the training time of the network. Heterogeneous topologies that burden
learning with only relevant connections are desirable, but these are difficult to design by hand.

The combination of evolution and learning has some promise, since evolution can save ANNs from

costly training procedures, but, unfortunately, at the expense of evaluating hundreds or thousands
of different ANNs. Still, evolution has no problem with recurrent connections, so one division of
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labor might be to allow genomes to encode fixed weights for recurrent links, while standard feed-
forward connections could be learned. To more closely mimic the brain, the learning might be a
combination of unsupervised Hebbian modification (to learn patterns) and reinforcement learning
(to learn associations between actions and rewards).

Combining development and learning has promise with respect to both size and intricacy aspects
of complexity. To wit, the former allows us to create large, structured networks, while the latter
enables situation-dependent weight tuning. However, the two in isolation present a bit of a dilemma:

1. If an engineer already knows the desired topological structure of an ANN that will serve as
the basis for learning, then the design of a developmental process to grow that network is
little more than an interesting exercise, unless, of course, the hand-crafting of the topology is
tedious and requires automation.

2. If the topology is not known ahead of time, then the system will need to search in the
component and parameter space of the developmental procedure in order to grow many
different networks, which are then tested for their ability to synaptically tune to the problem.

Hence, it makes little sense to have development unless it is accompanied by a search technique.
Unfortunately, this type of search problem is not nicely constrained: it involves finding primitive
sets for growing useful global structures. Many traditional search techniques would bog down in
their attempts to enumerate and evaluate all possible combinations of primitives, but evolutionary
algorithms have no problem with these more untraditional search spaces. Anyone who has ever
written context-free grammars or rule sets for expert systems knows the difficulties of designing
primitives for growing complex structures or achieving complex behaviors. The work requires
considerable creativity and trial-and-error. Hence, for complex problems, development may actually
require evolution.

EvoDevo systems, i.e., those that combine evolution and development, are very popular, since they
do allow small genotypes to produce large (structured) phenotypes, and evolution can effectively
search for a useful developmental strategy in the restricted genotype space. However, these systems
fail to capture problem-relevant intricacies. Granted, a relatively simple signalling system during
development, using only a few overlapping chemical gradients, can achieve a reasonable degree of
heterogeneity in the phenotype. This may even enable the formation of neural structures such
as topological maps [12]. However, development simply cannot anticipate all the critical neural
associations that organisms need to form in order to behave properly in their environments.

Nature versus nurture debates always seem to come to similar conclusions: the emergence of com-
plex behavior requires both. Hence, the brains of complex organisms cannot be pre-wired to handle
all of life’s complexities; learning is necessary.

Thus, the biological and engineering realities indicate that the achievement of sophisticated intelli-
gence in an artificial neural substrate may require all three adaptive mechanisms. In short, scaling
requires development, which requires evolutionary search; and both need help from learning to
tailor a large set of connections to the environment and problem at hand. Although many contem-
porary POE/TRIDAP systems are primarily proofs of principle, this basic combination appears
essential for the scaling of connectionist Al.
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